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Error minimization in Variable Fractional delay 
FIR Digital Filter

   Preeti Gulati, Prof. Karamjeet Singh

 Abstract:-The Digital filters having changeable frequency responses are called variable digital filters. Basically, variable digital filters 
include those with variable magnitude response or/and VFD response. The various efficient methods have also been developed for 
designing both FIR VFD filters and IIR all-pass VFD filters. The simplest VFD filters are the Lagrange-type VFD filters that can be derived 
from the Lagrange-polynomial interpolation. Lagrange-type VFD filters are a special class of FIR VFD filters whose frequency responses at 
frequency are the maximally flat, so they are often called the maximally flat VFD filters. Since Lagrange-type VFD filter has a closed-form 
impulse response that can be expressed as a polynomial in the VFD parameter, it is easy to use. Moreover, coefficient symmetry can be 
developed and exploited in fast hardware implementation through coefficient transformations. However, one disadvantage of the Lagrange-
type VFD filters is that the passband width is rather narrow. For wideband VFD filtering applications, efficient methods for designing 
wideband VFD filters using both FIR and IIR all-pass transfer functions have been developed. So far, most existing design methods obtain 
VFD filters by approximating the desired (ideal) VFR in the WLS sense or minimax sense. The former minimizes the total error energy 
(integral of squared errors) of the VFR while the latter minimizes the maximum absolute error (peak error) of the VFR. Generally speaking, 
there is a trade-off between the two kinds of errors, i.e., the two kinds of errors cannot be simultaneously minimized by using the existing 
design methods. Usually, minimizing one then increases another. In the minimax design case, So develop a biminimax method for 
designing even-order FIR VFD filters whose VFR peak error and VFD peak error are simultaneously suppressed. More concretely, both the 
two peak errors are simultaneously made nearly equi-ripple, which is referred to as bi-equiripple. The most important part of the biminimax 
design is to linearize the highly non-linear constraints on the VFD errors as linear ones. After the linearization, the biminimax design can be 
easily performed by minimizing a mixed error function that contains both the VFR peak error and VFD peak error. However, minimization is 
a highly nonlinear problem, So we want to try iterative method for overcome it to further reduce the maximum absolute group-delay error in 
the least squares design, an iterative weighting-updated technique is also proposed, which constitutes the outer loop of the overall iterative 
process while the iteration stated earlier makes up the inner loop. 
 
Keyword: - Finite impulse response(FIR), Infinite-impulse-response(IIR),Variable frequency response (VFR), Weighted-least-
squares(WLS),Variable fractional delay(VFD). 

 

                                               ——————————      —————————— 
 

1 INTRODUCTION 
 

HE variable fractional delay (VFD) digital filters  as an 
important class of the variable digital filters  have been 
receiving increasingly attention in the past decade. 

Under tuning a controlling parameter, this kind of filters 
changes continuously a delay, which is a fraction of the 
sampling period.VFD filters have many applications in 
different areas of signal processing and communication, for 
example, time adjustment in digital receivers, speech 
coding and synthesis, time delay estimation and analog–
digital (A/D) conversion, etc. A method for developing VFD 
filters is also an essential technique for the fractional linear 
discrete-time systems. Theoretically speaking, the design of  
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variable digital filters under optimal sense is more 
complicated and difficult than the design of fixed delay 
filters, since the impulse response or the poles and zeros of 
the filters are some type of functions in the variable 
parameter (are generally assumed to be polynomial 
functions. Therefore, suboptimal approaches for the design 
of variable digital filters should be investigated for the 
purpose of reducing the computation complexity. For 
instance, the two-stage approach, i.e., designing a set of 
fixed-coefficient filters, and then fitting each of the 
coefficients as polynomials, has been proposed in the 
literatures. Recently, advances have been made on the 
design of some type of VFD filters, such as finite-impulse 
response (FIR) VFD filters and infinite-impulse response 
(IIR) all pass VFD filters. However, most of the methods 
employed iteration algorithm to formulate the design 
problem. Since large numbers of coefficients should be 
designed, related iteration algorithms still feature 
considerable computation complexity. 

T 
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2  DESIGN METHOD 
For the purpose of comparison and the use of the 
conventional LS design of VFD FIR digital filters is 
reviewed in this section. The desired response of a VFD FIR 
filter is given by 

 
Hd(w, p) = e−j(I+p)w = e−jIw(cos(wp)− j sin(wp)) ,  

                                              w ≤ wp ;        −0.5 ≤ p ≤ 0.5 

Where is a prescribed mean group delay and is the 
parameter used to adjust the group delay of a filter online. 
The used transfer function is characterized by 

H(z, p) = �hn
N

n=0

(p)z−n 

where coefficients h(n) are expressed as the polynomials of 
p by  

hn(p) = � h(n, m)
M

m=0

pm 

Hence 

H(z, p) = �� h(n, m)
M

m=0

N

n=0

pm z−n                          

                               = ∑ Gm
M
m=0 (z)pm                                    

Where sub filters Gm(z) are represented by 

Gm(z) = �h(n, m)
N

n=0

z−n  , 0 ≤ m ≤ M 

Obviously, this can be implemented by the Farrow 
structure .The  equation can be further represented by 

Hd(w, p) = e−jIw �
(−jpw)m

m!

∞

m=0

≡ � �
(−jw)m

m!
e−jIw�

M

m=0

pm 

for sufficiently large M. After compersion, it can be found 
that the frequency response of Gm(z) is used inherently to 

approximate �(−jw)m

m!
e−jIw� for 0 ≤ m ≤ M . Therefore, it is 

reasonable to choose the coefficients of Gm(z)  to be 
symmetric for even and anti symmetric for odd  M, and 

obviously, I = N
2�  . In this paper, only even is used, and the 

case for odd can be extended in a similar manner. Notice 
that the first subfilter G0(z)  is designed to 
approximate  e−j�N 2� �w  , so h(n, 0) = δ�n− (N 2⁄ )� . Hence, 
the frequency response of can be written as 

H(ejw, p) =  e−j
N
2

w �1

+ �� a(n, m)p2m cos(nw)  
N/2

n=0

Mc

m=1

+ j ��b(n, m)p2m−1 sin(nw)
N/2

n=1

Ms

m=1

� 

Defining 

a =

⎣
⎢
⎢
⎢
⎡
�
a(0,1) … … … … … . . , a �

N
2

, 1�… … … … … …

. a(0, Mc) … … … . a(
N
2

, Mc)
�

⎦
⎥
⎥
⎥
⎤
T

 

b =

⎣
⎢
⎢
⎢
⎡
�
b(1,1) … … … … … . . , b �

N
2

, 1�… … … . b(1, Ms) …

… … . b(
N
2

, Ms)
�

⎦
⎥
⎥
⎥
⎤
T

 

c(w, p) = �
p2 … … … p2 cos �

N
2

w�… … … … . p2MC … …

… p2MC cos(
N
2

w)
�

T

 

s(w, p) =

⎣
⎢
⎢
⎢
⎡

p sin(w) … …

… … p sin �
N
2

w�… . p2MS−1 sin(w) … …

. … p2MS−1 sin(
N
2

w) ⎦
⎥
⎥
⎥
⎤
T

 

Equation  can be written as  

H(ejw, p) = e−j
N
2w[1 + aTc(w, p) + jbTs(w, p)] 

Where the subscript .Tdenotes the response operator.The 
conventional objective error function for designing a VFD 
FIR filter is given by  

ec(a, b) = � � W(w)
wp

0

0.5

−0.5
|Hd(w, p) −H(ejw, p)|2 
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ec(a, b) = � � W(w)|cos(pw)
wp

0

0.5

−0.5
− j sin(pw)− 1 − aTc(w, p)
− jbTs(w, p)|2dwdp 

 

ec(a, b) = ec(a) + ec(b) 

Where W(w) is a weighting  function 

ec(a) = � � W(w)(cos(pw)− 1 − aTc(w, p))2 dwdp
wp

0

0.5

−0.5
 

 

ec(a) = sa + raTa + aTQaa 

 

ec(b) = � � W(w)(sin(pw) +bTs(w, p))2 dwdp
wp

0

0.5

−0.5
 

 

ec(b) = sb + rbTb + bTQbb 

sa = � � W(w)(cos(pw)− 1)2dwdp
wp

0

0.5

−0.5
 

 

ra = −2� � W(w)(cos(pw)− 1)c(w, p)dwdp
wp

0

0.5

−0.5
 

 

Qa = � � W(w)c(w, p)cT(w, p)dwdp
wp

0

0.5

−0.5
 

sb = � � W(w)(sin(pw))2dwdp
wp

0

0.5

−0.5
 

 

rb = 2� � W(w) sin(pw) s(w, p)dwdp
wp

0

0.5

−0.5
 

 

Qb = � � W(w)s(w, p)sT(w, p)dwdp
wp

0

0.5

−0.5
 

For LS design W(w) = 1 and by applying the technique in 
[22], the elements inra,Qa, rb , and Qb can be represented in 
closed form. In this paper K must be chosen large enough 
and K = 10 is used in this paper. Oncera , Qa , rb , and Qbare 
obtained, the optimal solutions in the LS sense can be 
achieved by differentiating  with respect to a and  b , 
respectively, and then setting the results to zero as follows: 

∂ec(a, b)
∂a

=
∂ec(a)
∂a

= ra + 2Qaa = 0 

∂ec(a, b)
∂b

=
∂ec(b)
∂b

= rb + 2Qbb = 0 

Which yield 

a = −
1
2

Qa
−1ra 

b = −
1
2

Qb
−1rb 

 

3. PROPOSED DESIGN METHOD 
 

In Section 2, the VFD FIR filter is designed such that the 
root-mean-square error of variable frequency response can 
be minimized. In this section, delay-oriented minimization 
is proposed so that the root-mean-square group-delay error 
can be minimized as much as possible while the desired 
variable frequency response can be preserved to a certain 
extent.  

The desired group-delay response of a VFD FIR filter can 
be derived from  

𝜏𝑑(𝑤,𝑝) = −
𝜕
𝜕𝑤

< 𝐻𝑑(𝑤, 𝑝) =
𝑁
2

+ 𝑝   ;      

                                   |𝑤| ≤ 𝑤𝑝 ∶  −0.5 ≤ 𝑝 ≤ 0.5     

And the actual group-delay response of the designed 
system is given by  

𝜏𝐻(𝑤, 𝑝) = −
𝜕
𝜕𝑤

< 𝐻(𝑒𝑗𝑤 ,𝑝)

=
𝜕
𝜕𝑤

�−
𝑁
2
𝑤 + tan−1

𝑏𝑇𝑠(𝑤, 𝑝)
1 + 𝑎𝑇𝑐(𝑤, 𝑝)� 
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𝜏𝐻(𝑤, 𝑝)

=
𝑁
2
−  
�1 + 𝑎𝑇𝑐(𝑤,𝑝)��𝑏𝑇𝑠𝑑(𝑤,𝑝) − 𝑎𝑇𝑐𝑑(𝑤,𝑝)��𝑏𝑇𝑠(𝑤, 𝑝)�

�1 + 𝑎𝑇𝑐(𝑤,𝑝)�
2 + �𝑏𝑇𝑠(𝑤, 𝑝)�

2  

𝑐𝑑(𝑤, 𝑝) =
𝜕
𝜕𝑤

𝑐(𝑤, 𝑝) 

𝑠𝑑(𝑤, 𝑝) =
𝜕
𝜕𝑤

𝑠(𝑤, 𝑝) 

 

The objective error function of the proposed method is 
given by  

𝑒(𝑎, 𝑏) = � � 𝑊(𝑤)|𝜏𝑑(𝑤,𝑝) − 𝜏𝐻(𝑤, 𝑝)|2
𝑤𝑝

0
𝑑𝑤𝑑𝑝

0.5

−0.5

+ 𝛼� � 𝑊(𝑤)|𝐻𝑑(𝑤, 𝑝)
𝑤𝑝

0

0.5

−0.5

− 𝐻(𝑒𝑗𝑤,𝑝)|2𝑑𝑤𝑑𝑝 

 

𝑒(𝑎, 𝑏) = 𝑒𝜏(𝑎, 𝑏) + 𝛼𝑒𝑐(𝑎, 𝑏) 

Where 𝛼  is a relative weighting constant, 𝑒𝑐(𝑎, 𝑏)  and 
𝑒𝜏(𝑎, 𝑏) is shown as 

𝑒𝜏(𝑎, 𝑏)

=  � � 𝑊(𝑤)
𝑤𝑝

0

0.5

−0.5
�𝑝

+
�1 + 𝑎𝑇𝑐(𝑤,𝑝)��𝑏𝑇𝑠𝑑(𝑤,𝑝) − 𝑎𝑇𝑐𝑑(𝑤, 𝑝)��𝑏𝑇𝑠(𝑤, 𝑝)�

�1 + 𝑎𝑇𝑐(𝑤,𝑝)�
2 + �𝑏𝑇𝑠(𝑤, 𝑝)�

2 �
2

𝑑𝑤𝑑𝑝 

 

 Obviously, minimization of  is a highly nonlinear problem, 
and an iterative method is proposed in this paper to replace 
it. 

The objective error function in the 𝑘 th iteration for the 
proposed iterative method is represented by 

𝑒𝑘(𝑎𝑘 ,𝑏𝑘) = 𝑒𝜏,𝑘(𝑎𝑘 ,𝑏𝑘) + 𝛼𝑒𝑐,𝑘(𝑎𝑘 ,𝑏𝑘) 

𝑒𝑘(𝑎𝑘 ,𝑏𝑘) = � �
𝑊(𝑤)

𝐻𝑘−14 (𝑤, 𝑝)

𝑤𝑝

0

0.5

−0.5
�(𝐻𝑘−12 (𝑤, 𝑝)𝑝

+𝐻𝑅,𝐾−1(𝑤,𝑝)𝑏𝑘𝑇𝑠𝑑(𝑤,𝑝)
−𝐻𝐼,𝑘−1(𝑤,𝑝)𝑎𝑘𝑇𝑐𝑑(𝑤,𝑝))2�𝑑𝑤𝑑𝑝+ 𝛼(𝑠𝑎
+ 𝑟𝑎𝑇𝑎𝑘 + 𝑎𝑘𝑇𝑄𝑎𝑎𝑘 + 𝑠𝑏 + 𝑟𝑏𝑇𝑏𝑘 + 𝑏𝑘𝑇𝑄𝑎𝑏𝑘) 

Where the coefficient vectors denoted by subscript 𝑘 are to 
be determined in the 𝑘 th iteration and the functions 
denoted by subscript 𝑘 − 1 are the results of the previous 
iteration, which are defined by 

𝐻𝑅,𝑘−1(𝑤,𝑝) = 1 + 𝑎𝑘−1𝑇 𝑐(𝑤, 𝑝) 

𝐻𝐼,𝑘−1(𝑤,𝑝) = 𝑏𝑘−1𝑇 𝑠(𝑤, 𝑝) 

𝐻𝑘−1(𝑤, 𝑝) = �𝐻𝑅,𝑘−1
2 (𝑤, 𝑝) +𝐻𝐼,𝑘−12 (𝑤, 𝑝)�

1
2 

Thus, the original nonlinear problem can be converted into 
an iterative quadratic problem whose error function can be 
formulated into 

 

𝑒𝑘(𝑎𝑘,𝑏𝑘) = 𝑠𝜏 + 𝑏𝑘𝑇𝑄𝑠𝑏𝑘 + 𝑎𝑘𝑇𝑄𝑐𝑎𝑘 + 𝑟𝑠𝑇𝑏𝑘 + 𝑟𝑐𝑇𝑎𝑘 + 𝑎𝑘𝑇𝑄𝐶𝑆𝑏𝑘
+ 𝛼(𝑠𝑎 + 𝑟𝑎𝑇𝑎𝑘 + 𝑎𝑘𝑇𝑄𝑎𝑎𝑘 + 𝑠𝑏 + 𝑟𝑏𝑇𝑎𝑘
+ 𝑏𝑘𝑇𝑄𝑏𝑏𝑘) 

Where 

𝑠𝜏 = � � 𝑊(𝑤)𝑝2𝑑𝑤𝑑𝑝
𝑤𝑝

0

0.5

−0.5
 

𝑄𝑠 = � � 𝑊(𝑤)
𝐻𝑅,𝑘−1
2 (𝑤,𝑝)
𝐻𝑘−14 (𝑤, 𝑝) 𝑠𝑑(𝑤,𝑝)𝑠𝑑𝑇(𝑤,𝑝)𝑑𝑤𝑑𝑝

𝑤𝑝

0

0.5

−0.5
 

𝑄𝑐 = � � 𝑊(𝑤)
𝑤𝑝

0

0.5

−0.5

𝐻𝐼,𝑘−12 (𝑤, 𝑝)
𝐻𝑘−14 (𝑤,𝑝) 𝑐𝑑

(𝑤, 𝑝)𝑐𝑑𝑇(𝑤, 𝑝)𝑑𝑤𝑑𝑝 

 

𝑟𝑠 = 2� � 𝑊(𝑤)
𝐻𝑅,𝑘−1(𝑤,𝑝)𝑝
𝐻𝑘−12 (𝑤, 𝑝) 𝑠𝑑(𝑤,𝑝)𝑑𝑤𝑑𝑝

𝑤𝑝

0

0.5

−0.5
 

 

𝑟𝑐 = −2� � 𝑊(𝑤)
𝐻𝐼,𝑘−1(𝑤, 𝑝)𝑝
𝐻𝑘−12 (𝑤, 𝑝) 𝑐𝑑(𝑤, 𝑝)𝑑𝑤𝑑𝑝

𝑤𝑝

0

0.5

−0.5
 

𝑄𝐶𝑆 = −2� �
𝑊(𝑤)

𝐻𝑅,𝑘−1(𝑤, 𝑝)𝐻𝐼,𝑘−1(𝑤,𝑝)
𝐻𝑘−14 (𝑤, 𝑝)

. 𝑐𝑑(𝑤,𝑝)𝑠𝑑𝑇(𝑤,𝑝)𝑑𝑤𝑑𝑝

𝑤𝑝

0

0.5

−0.5
 

In the  𝑘th iteration, solutions 𝑎𝑘and 𝑏𝑘 can be obtained by 
differentiating with respect to 𝑎𝑘 and 𝑏𝑘 , respectively, and 
then setting the results to zero 
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𝜕𝑒𝑘(𝑎𝑘 ,𝑏𝑘)
𝜕𝑎𝑘

= 2𝑄𝑐𝑎𝑘 + 𝑟𝑐 + 𝑄𝑐𝑠𝑏𝑘 + 𝛼𝑟𝑎 + 2𝛼𝑄𝑎𝑎𝑘 = 0 

𝜕𝑒𝑘(𝑎𝑘 ,𝑏𝑘)
𝜕𝑏𝑘

= 2𝑄𝑠𝑏𝑘 + 𝑟𝑠 + 𝑄𝑐𝑠𝑇 𝑎𝑘 + 𝛼𝑟𝑏 + 2𝛼𝑄𝑏𝑏𝑘 = 0 

Which lead  to  

𝑎𝑘 = −
1
2

(𝑄𝑐 + 𝛼𝑄𝑎)−1(𝑟𝑐 + 𝛼𝑟𝑎 + 𝑄𝑐𝑠𝑏𝑘) 

𝑏𝑘 = −
1
2

(𝑄𝑠 + 𝛼𝑄𝑏)−1(𝑟𝑠 + 𝛼𝑟𝑏 + 𝑄𝑐𝑠𝑇 𝑎𝑘) 

After modification  

𝑎𝑘 = �2𝑄𝑐 −
1
2𝑄𝐶𝑆

(𝑄𝑆 + 𝛼𝑄𝑏)−1𝑄𝐶𝑆𝑇 + 2𝛼𝑄𝑎�
−1

 

�
1
2
𝑄𝐶𝑆(𝑄𝑆 + 𝛼𝑄𝑏)−1(𝑟𝑠 + 𝛼𝑟𝑏) − 𝑟𝑐 − 𝛼𝑟𝑎� 

 

𝑏𝑘 = �2𝑄𝑆 −
1
2𝑄𝐶𝑆

𝑇 (𝑄𝑆 + 𝛼𝑄𝑎)−1𝑄𝐶𝑆 + 2𝛼𝑄𝑏�
−1

 

�
1
2
𝑄𝐶𝑆𝑇 (𝑄𝐶 + 𝛼𝑄𝑎)−1(𝑟𝑐 + 𝛼𝑟𝑎)− 𝑟𝑆 − 𝛼𝑟𝑏� 

 

Notice that because the related matrices, whose inverses are 
to be determined are symmetric and positive definite, the 
technique of Cholesky factorization can be applied to solve 
the ill-conditioning problem.  

To terminate the iterative process, the relative norms are 
defined by 

𝛽𝑎,𝑘 =
‖𝑎𝑘 − 𝑎𝑘 − 1‖

‖𝑎𝑘‖
 

𝛽𝑏,𝑘 =
‖𝑏𝑘 − 𝑏𝑘 − 1‖

‖𝑏𝑘‖
 

When both 𝛽𝑎,𝑘  and 𝛽𝑏,𝑘 are small enough, e.g., smaller than 
𝜀𝑖𝑛𝑛 , where 𝜀𝑖𝑛𝑛  is a preassigned very small positive 
constant, the iterative process can stop.  

The iterative procedures are shown in Fig. 1 and described 
in detail as follows. 

 

Step 1) Given  ,𝑀 ,𝑤𝑝  , and and setting iterative counter 
𝑘 = 0, find the initial coefficient vectors 𝑎0 and 𝑏0. 

  

Step 2) Increase iterative counter  𝑘 by one and calculate 

𝐻𝑘−1(𝑤,𝑝),𝐻𝑅,𝑘−1(𝑤, 𝑝) ,𝐻𝐼,𝑘−1(𝑤, 𝑝) ,𝑄𝑆 , 𝑄𝐶, 𝑟𝑠 ,𝑟𝑐  and 𝑄𝐶𝑆. 

 

Step 3) Find coefficient vectors 𝑎𝑘 and  𝑏𝑘. 

 

Step 4) Check whether both relative norms 𝛽𝑎,𝑘and𝛽𝑏 ,𝑘 are 
small enough by 

                                       𝛽𝑎 ,𝑘 < 𝜀𝑖𝑛𝑛  

                                              𝛽𝑏,𝑘 < 𝜀𝑖𝑛𝑛   

If the condition is satisfied, stop the process; otherwise, go 
to Step 2). 
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Flow Chart for proposed  method 

 

4. CONCLUSION 
In this paper, a new method for the minimization of the 
root-mean-square error of variable group-delay response 
has been proposed for the design of VFD FIR digital filters. 
To overcome the nonlinear optimization for minimization, 
the proposed iterative method can be successfully used, 

and the experimental results may be show that the 
performance in group-delay response and the convergence 
of the iterative method are satisfactory. 
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Initiation 𝑁 ,𝑀 ,𝑤𝑝 , 𝛼, 
𝑎𝑜 ,𝑏0 ,𝜀𝑖𝑛𝑛  ,𝑘 =0 

𝑘 ← 𝑘 + 1 

Calculate 

𝐻𝑘−1(𝑤,𝑝),𝐻𝑅,𝑘−1(𝑤,𝑝) ,𝐻𝐼,𝑘−1(𝑤, 𝑝) 
,𝑄𝑆 , 𝑄𝐶 , 𝑟𝑠 ,𝑟𝑐  and 𝑄𝐶𝑆. 

 

      Find  𝑎𝑘 ,  𝑏𝑘 

𝛽𝑏,𝑘 < 𝜀𝑖𝑛𝑛  

 𝛽𝑎 ,𝑘 <  𝜀𝑖𝑛𝑛  
And 
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